Identify possible solutions

une-logo-500pxJohn Malouff, Ph.D., J.D., earned a law degree from the University of Colorado in 1979 and a Ph.D. in clinical psychology from Arizona State University in 1984. He currently works as an associate professor of psychology at the University of New England, in Armidale, Australia. He has co-authored five books and several dozen articles in scientific journals. He writes a blog on Using Psychology in day-to-day life.

Link to original documentProblem Solving Strategies

Ask someone, especially an expert.
If we look hard enough we can usually find someone who knows more about how to solve a particular problem than we do. The fastest way to solve the problem may be to ask that person. So if you don’t know how to fix a leaking faucet, or help your child act more outgoing, or improve your job interviewing success, ask an expert.

Seek the answer in written material.
Written materials exist that show how to solve many problems. New devices often come with instruction manuals. Libraries and bookstores are loaded with “How To” books. The Internet offers answers to many problems – if we ask the right question and use judgment about which web sites are credible. So if you want to learn how to improve the appearance of your nose, you could look up “cosmetic” or “nose” surgery in an Internet search engine and in a medical encyclopaedia in the library.

Use a tool or technology.
Some problems require the right tool, which could be a hammer, a computer, or a metal detector. So whenever you have a problem to solve, consider whether some type of technology might help you.

Apply a theory.
Good theories can point us in the right direction to find a solution to a problem. For instance, Albert Bandura’s social learning theory suggests that if we want to teach a child to act altruistically, we would set an altruistic model in our behaviour, talk about our altruistic goals, and reward the child (perhaps with praise) when she acts altruistically. Other theories in fields as different as economics and physics provide possible solutions to various types of problems.

Apply the scientific method.
The scientific method has helped to produce many of the great accomplishments of recent human history, such as doubling the average human lifespan, putting a human on the moon, and discovering planets orbiting other stars. The method involves systematically collecting data to test a hypothesis, applying certain types of research design and analysis methods to the data, and being sceptical about the results. For more information, see:

Use mathematics.
Mathematics is essential to solving some problems, such as how to put an exploring robot on Mars, how to determine whether one treatment is generally more effective than another for pancreatic cancer, and how to defend an area from enemy missiles. There are many types of mathematics, but even the simplest can be helpful in problem solving. For example, if you want to make yourself happier, you might start by counting the number of days in the next 14 that you feel happy. Then you have a baseline to use as a comparison after you make some behavioural or situational changes in pursuit of more happiness. If you wanted to determine whether a new treatment for diabetes is better than the usual treatment, you might use a t test to compare the blood sugar levels are of the group of people using the new treatment with a group of people using the usual treatment.

Use a formula.
Sometimes, a formula can help solve a problem. The formula could be a recipe, a set of chemicals, pressures, and heat levels, or an established method of doing something else. So, if you want to develop a permanent way of marking the right lens for contact lens wearers, start with the formulas for permanent pens and markers. If you want to create a better toothpaste, start with a typical formula and try altering its components.

Reason by analogy, using what you have learned about similar problems.
Going through life we solve many problems. Often the problem solving methods we used and the actual solutions we found effective in the past can work to solve a current problem. So, if you have solved before a problem with a neighbour’s dog barking all night, the same solution may work with another neighbour who plays loud music all night. In fact, the same solution might be something to try with anyone who is chronically annoying.

Use deductive reasoning.
Deductive reasoning involves going from a general rule to an application in a specific instance. So, if we assume that people commit murder only if they have a motive, then we look for murder suspects among people who had a motive. If we start with a premise that people do what they think is in their best interest, we try to provide employees incentives to work productively. If we believe causes must occur prior to effects, we can conclude that a huge grass fire did not cause the high level of asthma attacks that started two days before the fire.

Use inductive reasoning.
Inductive reasoning involves drawing on specific instances to form a general rule. So, if you want to know whether your child will leave your yard if left outside alone, one thing you could do would be to set up that situation and covertly observe the child on several occasions. If you want to find out whether eating chocolate causes you acne, eat chocolate every day for two weeks, then not at all for two weeks, then every day again for two weeks, then not at all for two week, and record the state of your skin every day. If you want to know whether a genetically altered microbe will reproduce in field settings, put a specific number of the microbes in field settings and later count the number.

Question assumptions.
Our thinking contains many assumptions or beliefs that have never been well tested, such as that our religion or ethnic group is the best one. If you want to reduce inter-group conflict, questioning these assumptions might help.   If you want to stop children from starting to use illegal drugs, question the assumption that educating them about the effects of the drugs will discourage use.   If you want to develop close relations with your supervisor, you may benefit from questioning your assumption that all supervisors are power hungry and self-centred.

Guess, check, and adjust.
It may work to guess at a solution, especially if the range of possible solutions is limited as in a multiple-choice test. You can check to see whether your guess is right, and then eliminate the option if it is not.   As Sherlock Holmes said, once you have eliminated all the possibilities except one, that one must be the solution.  Sometimes guessing can help us even when the range of possible answers is unlimited.  For instance, in solving for x in x + y = 12 and 2x – y = 3, if there are no answers from which to choose, and you don’t know how to solve simultaneous equations, you can guess at what x is, and if you miss, you can use how much you miss by to make a better second guess, and so on, adjusting your guessing as you go. That, in essence, is how software for structural equation modelling proceeds to a solution.

Work backwards.
In solving a printed maze, looking at the goal area and working backward sometimes offers the fastest solution. That may occur because the maze maker did not expect you to use this strategy. Also, if you want to recreate the events involved in a crime, you could start with a possible perpetrator and the available evidence, work backward in time, and see what makes sense.

Share This